
FERTILIZING GREENHOUSE CROPS

UNIVERSITY OF MISSOURI EXtension

Fertilizing Greenhouse Crops

Putting It All Together

- Strategies
- Equipment
- Precautions

Plant Nutrition Vs Plant Fertilization

Nutrition:

Availability & type of chemical elements in

> plant tissue

Fertilization:

Adding nutrients to growing medium in proper amounts

Why do we still have problems?

Must understand factors that affect plant nutrition

рН

- pH affects the <u>solubility</u> of fertilizers and the <u>availability</u> of nutrients
 - Some elements more available at low pH values others the opposite
- Also influences efficacy of pesticides and growth regulators
 - Materials less soluble at high water pH

 Influence of pH on nutrient availability

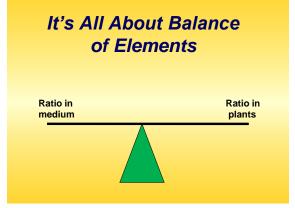
4.0 4.5 5.0 5.	, ₆ .	0 0.				8.0
	_					
	NITROC	EN				
				-	-	
	POT	ASSIUN				
PHOSPHORUS						
				LCIUM		
			CA	LCIUM		
					-	
	\leq	~	MAG	ESIUN		
IRON	_	_	-	-	1	
MANGANESE						
and Son Lab					Т	
BORON				<u> </u>	-	
ZINC					Т	
The second se					1	
COPPER				1	1	

4.0		.4 6.		7.0	0.0	0.0	10.
4.0	5.0	6.0		7.0	8.0	9.0	10.0
				Nitrog	en		
	-			Phosp	horus		
\leq				Potas	isium		
				Sulfu	Jr I		
				Calciu	ım		1
-				Magnes	sium		1
	_	Iron				1	-
	M	anganese		_	1		
	-	Boron		_	1		
	Cop	er and Z	ing				
				Molybde	num	_	

Problems Associated With Improper pH					
	Low pH	High pH			
	 Toxic: Iron Manganese Zinc Copper Deficient Calcium Magnesium Sensitive Ammonium-N 	• Deficient: – Iron – Manganese – Zinc – Copper – Boron			

Nutrition Affected By

- Chemical considerations
 - pH water, fertilizer solution
 - alkalinity water, fertilizer solution
 - EC water, fertilizer solution
- Fertilizer analysis
 - macronutrients, micronutrients
- Non-nutritional elements possible toxicities
 - Na, Cl, F, Al


Another Problem

• Nutrient antagonism



Common Antagonisms

Excess in Media	Def. in Plant
Ν	К
к	N, Ca, Mg
Р	Cu, Fe, Zn
Са	Mg, B
Mg	Ca, K
Fe	Mn
Mn	Fe, Mo
Zn	Mn, Fe
Cu	Mn, Fe, Mo
Мо	Cu

How do we actually get the fertilizer to our plants?

Application Options

- Pre-plant
 - -Substrate incorporation
- Post-plant
 - -Top dress/incorporate
 - -Liquid feed
 - (Might use all three on one crop)

Substrate Incorporation

- Separately
 - -Ground limestone (Ca, for pH)
 - -Superphosphate (P)
 - -Trace elements
 - -Slow release materials
- Package
 - -- "Starter charge" liquid or granular

Fertilizer Types

- Granular
 - -E.g. super phosphate, gypsum
- Slow (controlled) release
 - -E. g. Osmocote, MagAmp
- Water soluble -E.g. Excel, Jack's Classic

Additional types

- Chelated
 - -- E.g. Sequestrene[®] 330 Fe
- Organic
 - -- E.g. fish emulsion

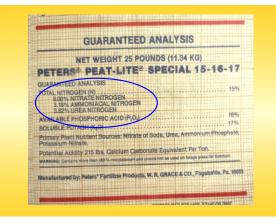
Slow Release Fertilizers

- + Extended release period
- + Fewer nutrients leached
- + Use instead of or with liquid feed
- + Form of automation
- Release rate varies
- Affects salts measurement
- Hard to leach excess salts

Slow Release--Types

- Plastic encapsulated
 - -Osmocote (analysis varies)
 - -12 week to nine month release
- Slowly soluble fertilizers
 - -Mag-Amp
- Sulfur-coated urea

 Primarily for turf



Post-plant (liquid)

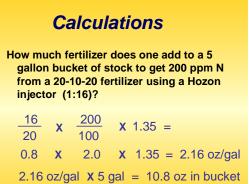
- Most commonly used
- Constant feed (CLF)

 dilute concentration
 every watering
- Periodic feed
 - –more concentrated –intervals (e.g. weekly)

Feeding Rates

- Constant liquid feed

 250 ppm N (top)
 150 ppm N (sub)
- Periodic feeding
- 500 ppm N weekly may top dress with Osmocote
- Bedding plants
 150 250 ppm N as needed



Calculations

To determine amount of fertilizer to add to make stock solution:

injector ratio (:1) % element	v	desired ppm	۱,	4.05
% element	~	100	X	1.35

= ounces fertilizer/gallon stock

Calculations

How much fertilizer does one add to a 20 gallon tank of stock to get 250 ppm N from a 21-5-19 fertilizer using a Smith injector (1:100)?

 $\frac{100}{21} \times \frac{250}{100} \times 1.35 =$ 4.76 X 2.5 X 1.35 = 16.1 oz/gal 16.1 oz/gal X 20 gal = 322 oz 322/16 = 20.1 lbs fert in tank

Checking injector/calculations

- Check accuracy with salts meter every time new batch of stock is mixed
- Fertilizer companies supply tables of EC values for each of their fertilizers at various concentrations

20-10-20 peat-lite special

- 200 ppm = EC of 1.30
- 250 ppm = EC of 1.63
- 300 ppm = EC of 1.95

Fertilizers: Cautions

- N sources
 - NH4⁺, NO3⁻, Urea
 - ≤ 40% NH₄⁺ best (20-10-20 Peatlite Special)
 - NH₄⁺ toxicity under winter conditions (low temp/light)
- Micronutrients
 - Can be in mix, fe
 - Soluble Trace El

Nutritional Monitoring

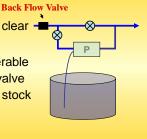
- Visual inspection
 - -Too late
 - -Symptoms = impaired growth
- Check "vital signs" of plant –pH and soluble salts
- Foliar (tissue) analysis
 Once per crop (expensive)

Fertilizing Equipment

Venturi Proportioners

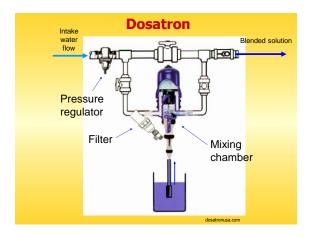
- Use pressure differences to draw stock solution into water line
- Pressure changes cause different uptake rate
- Must calibrate for local conditions
 Water pressure

 - Hose length



Water flow

Proportioner Installation


By-pass line for clear water

Dual lines preferable Anti-back flow valve Siphoning from stock tanks

Positive Displacement

- Flowing water drives piston that pumps stock solution
- Rated w/ min & max flow rates
- Not affected by pressure changes (within range)
- Smith (1:100, 1:200)
- Dosatron (variable)

Stock Mixing Cautions

- ++ Ca & Mg vs SO₄ & PO₄
- High concentrations (>100:1) can cause precipitates
- Precipitates form sludge in tank bottom
- Use two injectors
- Use dual head injector

Conclusion

- Taking a plant from "seed to sale" involves proper fertilization.
- There are many ways to get the job done.
- The best way is the one that works consistently for you.