
Greenhouse and High Tunnel Work Shop **Tomato Production Output**

I. SELECTION OF VARIETIES

- One of the most important management decisions
- A number of characteristics are important to consider when selecting varieties
 - o Fruit Color
 - o Fruit Size
 - o Disease resistance
 - o Vine type

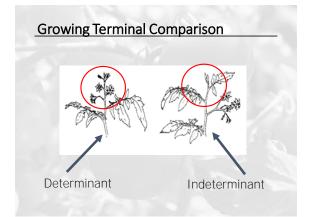
Disease Resistance

• Look for these letters after the name of the cultivar

Letter	Cultivar Resistant to:	
V	Verticillium wilt	
F _{1, 2 or 3}	Fusarium wilt (races)	
N	Root knot nematode	
т	Tobacco mosaic virus	
A	Alternaria (early blight)	
ST	Stemphylium (gray leaf spot)	
		5

Vine Types

• Determinant


- Produces a flower cluster at the terminal growth point
- Stops growth at a certain height
- Fruit matures over shorter time
- Some cultivars can be grown in containers

Vine Types

- Indeterminant
 - Never set a terminal flower cluster
 Continue to grow taller
 Older cultivars
 - Continue to bear until frost

Vine Types

• Semi-determinate

Newest classification
Ends with flower cluster but grows taller
Best of both previous types
Adaptive to "short stake" trellising

Indeterminate Example: Big Beef

- Red fruit; hybrid
- Large, beefy fruit with excellent flavor
- Resists fruit cracking
- Fruit can be allowed to vine ripen and still remain firm
- Excellent disease resistance package (VFNT)

Semi-determinate Example: Mountain Fresh +

- Red-fruited hybrid
- Produces large fruit with excellent quality
- Resists fruit cracking
- Very popular variety for short-stake trellising
- Good disease resistance

Heirloom Example: Brandywine

- Indeterminate vine—pink/purple fruit
- Heirloom type— very large, irregular fruit susceptible to cracking
- Considered by many to have better flavor than hybrid varieties
- Lower yields than hybrids
- Lacks disease resistance

II. Cultural Practices

Required growing conditions

- oNeed at least 6 -8 hours of
- sunlight per day oPrefer good "garden loam"
- oRequire warm temperatures for
- growth (time planting accordingly)

very important

oWater, nutrition and pest control

Planting Layout & Spacing

- Planting rate: 2600-5800 plants/acre
- Single rows or double rows (compact cultivars)
- Spacing:

Spacing	Beds	Variety size		
		Small vined (Determinant)	Large vined (Indeterminant)	
Between row or bed	5-6'	4'-6'	5'-7'	
Within rows, between plants	18"-30"	12"-24"	2'-3'	

Planting Tomatoes

- Started as transplants o6 weeks from seeding to field
- Space according to trellis system and cultivar o20-24 inch between plants common
- "Water in" with soluble fertilizer high in phosphorous oE.g. 9-45-15
- Trench plant leggy plants

Mulching

• Tomatoes often grown on black plastic mulch oAdvantages

- Suppresses weeds
- Maintains more even moisture
- Keeps the fruit cleaner
 Improves earliness

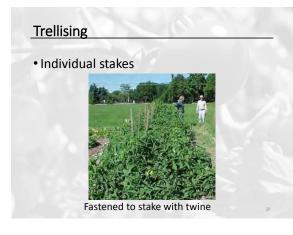
DisadvantagesShallow rooting

Pruning and Plant Support

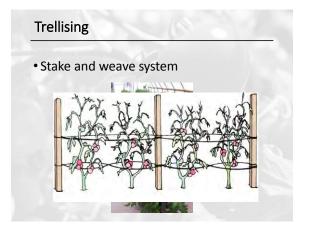
- Advantages
 - Promotes early, larger and cleaner fruits
 - Easier to harvest
 - May help reduce disease problems
- Disadvantages
 - Lower yieldsIncrease risk of sunscald and fruit cracking

Tomato Pruning


Pruning or "suckering"


- Suckers are small lateral shoots in leaf axils or crotch of small branches
- Pinch off when less than an inch long so plant puts more energy into fruit
- Most often done to staked, indeterminate tomatoes

Pruning


- Pruning or "suckering" oSuckers: small lateral shoots in leaf axils oPinch off when less than an inch long oMost often done to staked, indeterminant tomatoes
- Leaf pruning is also practiced

Overhead wire with twine support

Trellising

Cage system

- 。Little or no pruning
- Produce more fruit
- 。 Later Ripening
- . Low sunscald

Irrigation (fertigation)

- Water stress induces blossomend rot
- Plants require 2 2.5 qts. water/day as fruit sizes
- Equals 1000 gal./week for high tunnel with 300 plants
- Drip irrigation preferred method of application

Drip Irrigation

- Widely used
- Place UNDER plastic mulch
- Schedule irrigation
- Design system to allow for nutrient injections

Tomato Nutrition

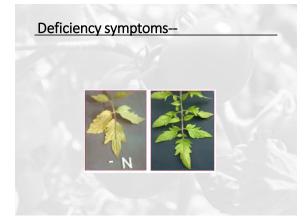
Test soil annually

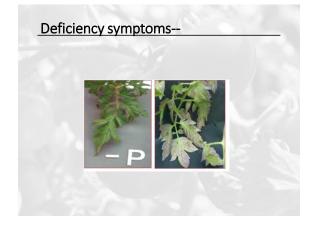
•Some of the nitrogen and most of the phosphorus and potassium required by a crop can be applied as pre-plant amount depends on soil test

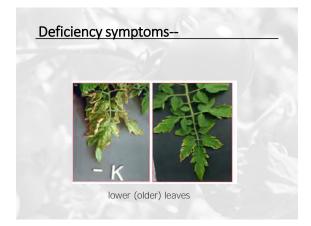
•DO NOT apply too much nitrogen early in crop (promotes vegetative growth)

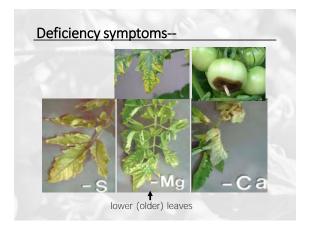
Pre-plant Fertilizer Application

- 30 lbs. nitrogen/acre
- 0-240 lbs. P₂0₅/acre*
- 0-300 lbs. K₂0/acre*


banded application


* = based on soil test results


Tomato Nutrition, cont.


- Once fruits have set, apply additional nitrogen
 - oFirst fruit about golf ball size
 - oCalcium nitrate + 4-18-38
 - oAlternate with potassium nitrate + 4-18-38
 - Potassium linked to fruit quality

Mulching

- Weed control
- Moisture retention
- Plastic or organic

Blossom-end rot

- A dry, leathery brown rot of the blossom end of the fruit
- Caused by poor calcium distribution in the fruit
- Solutions OSelect cultivars that are less susceptible OMaintain even watering

Fruit cracking

- Caused by irregular water supply
 - Sudden abundant moisture, especially following drought
 - oHeirloom varieties especially susceptible

Radial

Concentric

Yellow Shoulder

- Linked to heat stress
- Potassium nutrition also implicated
- More severe on "green shoulder" varieties
- Maintain adequate foliage cover and potassium fertility

Green (White) Core

- Heat stress
- Potassium deficiency

Sun Scald

- Bleached area on fruit
- Caused by direct exposure to sun/heat
- Prevent by maintaining good foliage cover

Catfacing

- Malformed fruit that appear scarred
- Most often seen on first clusters
- Associated with low temperatures at fruit set

Pest Management: Disease Origin

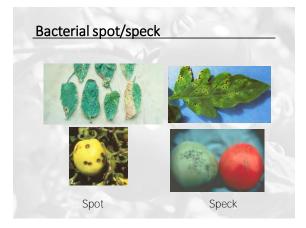
Tomato Diseases—Alternaria

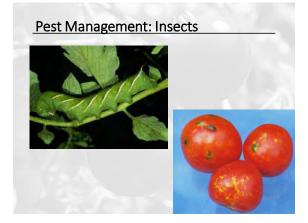
- Also called early blight
- Fungal disease—spores survive on plant debris
- Use IPM control oPlanting rotation oStrict sanitation oKeep foliage dry oFungicides for total control

Fusarium and Verticillium Wilts

- Soil borne; survives in soil for years
- Plants generally affected through roots
- Rotation (at least 2-3 years)
- Plant resistant varieties

Septoria Early Blight


- Survives over winter on infected plant debris
- Spores disperse by splashing water
- Favored by warm, moist conditions
- Symptoms generally appear first on lower leaves
- Follow Alternaria control measures



Fruit anthracnose

- Favored by warm, wet conditions
- Survives in soil and plant debris
- Spores splashed by rain or irrigation onto foliage and fruit
- Ripe or overripe fruit most susceptible--progresses rapidly
- Stake and mulch plants
- Remove and destroy infected fruit
- Fungicide sprays

Diseases--Viruses

- Light and dark green mottled leaves
 Necrosis of fruit with some strains
- Stunting, abnormal growth of plants depending on growth stage
- stage Virus easily transmitted by workers, machinery, insect vectors Virus survives on equipment, in plant debris—tobacco products Workers should wash hands and capitize equipment before
- sanitize equipment before handlingUse resistant cultivars

Cucumber mosaic virus

Walnut Wilt

- Response of tomato to juglone-compound produced by roots of walnut trees
- Do not plant tomatoes within 50 feet of walnut trees

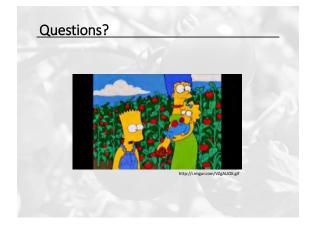
Herbicide Injury

- Tomatoes are very sensitive to herbicides in general
- 2,4-D and herbicides with similar action especially damaging to tomato

Disease: Management

 Spray plan

 Field, weather, disease specific
 Rapid resistance development
 Midwest Vegetable Production Guide for Commercial Growers
 See your local extension agent


IV. Harvesting Tomatoes

V. Economics: Profitability

Missouri Tomato Cost-Return Budget, Trickle Irrigation, Fresh Market
--

ncome	\$12,650	\$14,950	\$17,250
Variable Costs	\$9,652	\$10,322	\$10,992
Fixed Costs	\$508	\$508	\$508
Total Costs	\$10,160	\$10,830	\$11,499
Return over Total Costs	\$2,490	\$4,120	\$5,751
Total costs/box	\$9.24	\$8.33	\$7.67
Return/box	\$2.26	\$3.17	\$3.83

University of Missouri (2013)

