

What is Fertigation? Fertilizer + Irrigation = Fertigation Nutrient "spoon feeding" Can be done by: hand sprinkler system drip irrigation system

Fertigation • Advantages — Relatively uniform fertilizer applications — Flexibility in timing of applications — Less fertilizers used — Reduced costs • Disadvantages — Potential contamination hazard from equipment malfunctions — Backflow prevention devices required — Careful handling of liquid fertilizers

Objectives of Fertigation

- Maximize profit by applying the right amount of water and fertilizer
- Minimize adverse environmental effects by reducing leaching of fertilizers and other chemicals

Nutrition Affected By

- Chemical considerations
 - pH water, fertilizer solution
 - Alkalinity water, fertilizer solution
 - EC water, fertilizer solution
- Fertilizer analysis
 - Macronutrients, micronutrients
- Non-nutritional elements possible toxicities
 - Na, Cl, F, Al

Problems Associated With Improper pH Low pH High pH • Deficient: Toxic: - Iron - Iron Manganese Manganese - Zinc - Zinc Copper Copper - Boron Deficient Calcium Magnesium Sensitive - Ammonium-N

PH Adjustment Raise pH Use fertilizer with lower acid residue ammonium vs. nitrate calcium compounds Apply limestone calcitic -- CaCO₃ dolomitic -- CaMg(CO₃)₂ hydrated -- Ca(OH)₂

pH Adjustment

- Lower pH
 - Use fertilizer with acid residue
 - Apply sulfur-containing compounds $S + O_2 + H_2O \longrightarrow H_2SO_4 \longrightarrow 2 \text{ H}^+ + SO_4^{-2}$ (requires action of microbes)
 - Sulfuric acid

	NET WEIGHT 25 POUNDS (11.34 KG)
	PETERS® GENERAL PURPOSE SPECIAL 20-10-20
GU	ARANTEED ANALYSIS
ro	TAL NITROGEN (N) 20
	12.00% NITRATE NITROGEN 8.00% AMMONIACAL NITROGEN
AV	AILABLE PHOSPHORIC ACID (P.O.) 10
50	LUBLE POTASH (K.O) 20
Pri	mary Plant Nutrient Sources: Ammonium Nitrate, Ammonium Phosphate, Potassiu Nitrate.
Pot	tential Acidity 422 lbs. Calcium Carbonate Equivalent Per Ton.

Conclusions

- pH greatly affects plant nutrition
- Soilless media prone to pH changes
- Many factors influence pH change
- Monitoring pH important
 - Adjust according to crop and need

Nutrition Affected By

- Chemical considerations
 - pH water, fertilizer solution
 - Alkalinity water, fertilizer solution
 - EC water, fertilizer solution
- Fertilizer analysis
 - Macronutrients, micronutrients
- Non-nutritional elements possible toxicities
 - Na, Cl, F, Al

Alkalinity

- Alkalinity establishes the buffering capacity of water and affects how much acid is required to change the pH
 - Don't confuse with alkaline pH

Reference: www.ces.ncsu.edu/depts/hort/hil//hil-558.htm

Venturi Proportioners

- Use pressure differences to draw stock solution into water line
- Pressure changes cause different uptake rate
- Must calibrate for local conditions
 - Water pressure
 - Hose length
- Can require large stock tank

Estimating Stock Tank Size

- Gallon volume of square or rectangular tank
 - = Length x Width x Depth in feet x 7.5
 - Example: 6' L x 4" W x 2.5' D x 7.5 = 450 gallons
- Gallon volume of round tank (approximate)
- = Diameter x Diameter x Depth in feet x 6
 - Example:
 - 2' D x 2' D x 3' D x 6 = 72 gallons

Venturi Proportioner Examples

- Hozon[®]
 - 1:16 ratio, 35 PSI minimum
 - Unit not more that 50' from hose end
 - Backflow preventer included
 - Do not use with drip irrigation system
 - http://hozon.com
- Grow More®
 - 1:16 ratio, 30-90 PSI range
 - Unit not more that 75' from hose end
 - Backflow preventer included
 - Do not use with drip irrigation system
 - http://www.groworganic.com/siphon-mixer-injector.html

Venturi Proportioner Examples

- F7-Flo
 - 1:1000 to 1:100 variable ratio
 (2/3 tsp/gal to 2 TBS/gal)
 - 2 GPM min. flow rate
 - Backflow preventer not included
 - http://ezfloinjection.com
- Add-It®
 - 1:200 ratio, 10-80 PSI range
 - 0.5-20 GPM min. flow rate
 - Backflow preventer not included
 - http://fertilizerdispensers.com/services/add-it.htm

Venturi Proportioner Examples

- Young®
 - 1:30 to 1:200 variable ratio
 - 2 GPM min. flow rate
 - Backflow preventer <u>not</u> included
 - Very accurate
 - http://www.youngproductsinc.com/other_products.html

Positive Displacement

- Flowing water drives piston that pumps stock solution
 - No electricity used
- Rated with min. & max. flow rates depending on model
- Not affected by pressure changes (within range)

Solubility of Fertilizer in Pure Water, lbs./gal.		
Ammonium nitrate	9.8	
Calcium nitrate	8.5	
Potassium chloride	2.3	
Potassium nitrate	1.1	

 If two or more fertilizers are to be mixed in the same solution, test their combined solubility by first mixing them in 1-5 gallons of water

Reference: http://extension.uga.edu/publications/detail.cfm?number=B113

Stock Mixing Cautions

++ Ca & Mg vs SO₄ & PO₄

- High concentrations (>100:1) can cause precipitates
- Precipitates form sludge in tank bottom
- Use two injectors
- Use dual head injector

Calculations

To determine amount of fertilizer to add to make stock solution:

injector ratio (:1) % element x

desired ppm x 1.35

= ounces fertilizer/gallon stock

Calculations

How much fertilizer does one add to a 5 gallon bucket of stock to get 200 ppm N from a 20-10-20 fertilizer using a Hozon® injector (1:16)?

$$\frac{16}{20}$$
 x $\frac{200}{100}$ x 1.35 =

0.8 \mathbf{X} 2.0 \mathbf{X} 1.35 = 2.16 oz/gal

 $2.16 \text{ oz/gal } \times 5 \text{ gal} = 10.8 \text{ oz in bucket}$

Calculations

How much fertilizer does one add to a 20 gallon tank of stock to get 250 ppm N from a 21-5-19 fertilizer using a Smith® injector (1:100)?

$$\frac{100}{21}$$
 x $\frac{250}{100}$ x 1.35 =

4.76 x 2.5 x 1.35 = 16.1 oz/gal

 $16.1 \text{ oz/gal } \times 20 \text{ gal} = 322 \text{ oz}$

322 oz /16 oz per lb = 20.1 lbs fertilizer in tank

Calculations

How much fertilizer do you add to a 50 gallon tank to get 200 ppm-N from a 15-0-15 fertilizer using a 1:100 injector?

> 2 bags + 45.5 gallons water

Bags? (25 lbs each) 55.5 / 25 = 2+ bags Set up proportion: $\frac{55 \text{ lbs}}{50 \text{ gal}} = \frac{50 \text{ lbs}}{X \text{ gal}}$ $\frac{55 \text{ S}}{50 \text{ gal}} = \frac{50 \text{ lbs}}{X \text{ gal}}$

Daily Operations

Which is easier, more efficient and more precise?
55.5 lbs in 50 gallons

2 - 25 lb bags Weigh out 5.5 lbs from 3rd bag Fill tank to 50 gal.

50 lbs in 45.5 gallons?

2 - 25 lb bags Fill tank to 45.5 gal.

Less mess! No open bags!

Fertigation Tips

- Get water supply tested (pH, alkalinity, TDS, etc.)
- Use backflow preventer if required
- Install the injector out of direct sunlight
 - Make sure stock tank is opaque and covered
- Install injector after the timer so tank does not stay under constant pressure
- Always drain unit if there is a chance of freezing
- Be sure fertilizer is 100% water-soluble
 - Make liquid concentrate first from water-soluble powders
 - Strain concentrate to remove undissolved granules

Fertigation Tips

- Regularly check suction tube filter in stock tank for clogs and holes
- Minimum injection duration of 45-60 minutes is recommended
- Maximum injection duration depends on soil type and nutrient and water requirements of the crop
 - A "reasonable" maximum should not exceed 2 hours per zone

Conclusion

- Taking a plant from "seed to sale" involves proper fertilization
- There are many ways to get the job done
- The best way is the one that works consistently for you

